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Abstract. We perform molecular-dynamics simulations to study the shock melting of transition
metals such as Cu, Pd and Pt on the basis of an embedded-atom method. Using the coupling-constant
integration method, the Gibbs free energies of the crystalline and liquid phases are calculated as
a function of pressure and temperature, so that the melting curves are obtained, up to 3–4 Mbar.
We find the melting properties near zero pressure to be in good agreement with experiments. For
each metal, we compare the melting curve with the Hugoniot equations of state for the solid and
liquid phases and determine the melting region of the shock Hugoniot. The Hugoniot melting of
Cu is found to begin at 1.9 Mbar and to end at 2.25 Mbar, in good agreement with experimental
data. During the shock compression, we find that the pressure region where the Hugoniot melting
occurs increases almost linearly with increase of the ionic mass.

1. Introduction

Molecular-dynamics (MD) simulations have been very successful for studying the thermo-
dynamic properties of real materials [1–3]. Since the MD technique provides rich information
on the trajectories of ions, it is used as a basic tool for investigating the time evolution of
atomic positions, the determination of equilibrium atomic geometries, the direct observation of
structural phase transformations, and so on [4–7]. Although there have been several theoretical
approaches which do not rely on MD simulations, these calculations required a lattice-dynamics
model for the phonon free energy of the solid phase and a suitable reference system for the
free energy of the liquid phase [8, 9]. In the MD approach, with use of the thermodynamic
integration method, the Gibbs free energies of both the solid and liquid phases can be directly
calculated as a function of temperature and pressure, so that the melting temperatures of
materials are evaluated very accurately [10–12]. This method avoids the harmonic-crystal
approximation and the calculations of the phonon spectrum. Despite remarkable progress
on the first-principles description of electron–electron interactions and the computational
efficiency, first-principles MD simulations for transition metals are still challenging problems
because of the heavy computational demand. In addition, it is not clear whether the density-
functional approximation can describe accurately the ground-state properties of transition
metals and their high-pressure and high-temperature properties. In view of this, the use of
empirical potentials can give insight into the main behaviour which is otherwise difficult to
get from first-principles calculations, which are desirable. The melting properties of Al near
zero pressure have been studied using MD simulations based on an embedded-atom method
(EAM) [13]. In subsequent studies, the same EAM potential for Al was used to calculate the
melting curve up to 1.6 Mbar and the solid and liquid Hugoniots [14]. These calculational
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results demonstrated that the EAM potential is accurate enough to describe both the static and
dynamic properties of Al, with high computational efficiency.

In this paper, we perform MD simulations to investigate the melting properties of fcc
transition metals such as Cu, Pd and Pt near zero pressure using the embedded-atom method,
and find good agreements with experiments. We obtain the melting curves up to 3–4 Mbar and
determine the pressure region where the Hugoniot melting occurs. We find that the Hugoniot
melting pressure tends to increase with increasing ionic mass.

In section 2 we describe computational methods for the calculations of the Gibbs free
energies for the solid and liquid phases and details of the molecular-dynamics simulations. In
section 3 the calculated melting curves and Hugoniot equations of state for Cu, Pd and Pt are
given and discussed. The results are summarized in section 4.

2. The molecular-dynamics simulation method

The internal energies (U ) of the transition metals are calculated using the embedded-atom
method, which has been very successful in describing the ground-state properties [8,13]. We
employ the parameters in the EAM potentials which were previously determined to reproduce
the measured values for the cohesive energy, equilibrium lattice constant, and elastic constants
at normal pressure [13]. The Gibbs free energy at temperatureT and pressureP is calculated
using the coupling-constant integration method [15], which gives a difference of the Gibbs
free energies at two different temperatures. In this case, the Einstein solid with the oscillator
strength characterized by the Debye temperature is chosen as a reference system for the solid
phase. For the liquid phase, although an ideal-gas system is usually employed as a reference
system, an intermediate reference system with only repulsive interactions is required to avoid
the possible liquid–gas phase transition [1]. This reference system is obtained by a gradual
turning off of the attractive part ofU at constant volumeV0 = V (T0, P ), followed by a
reversible volume expansion process to infinite volume at a reference temperatureT0. The
details of the calculational procedure for the Gibbs free energies are given elsewhere [13,14].

In molecular-dynamics simulations, we use a Nosé thermostat [16] to control the
temperature of the ions, which provides the canonical trajectories for the ionic motions.
To perform isobaric molecular-dynamics simulations, we employ the variable-cell-shape
technique proposed by Wentzcovitch [17] and co-workers. The equations of motion for the
atomic positions, thermostat, and cell edges are integrated simultaneously using the fifth-
order predictor–corrector algorithm, with a time step of 10.5 au (=0.254 fs) for the whole
temperature range considered here. For each simulation run, we first equilibrate the system for
a period of 4000 time steps ('1 ps) and integrate an additional 6000 time steps ('1.5 ps) to
calculate the statistical average for a particular thermodynamic state atP andT . For the solid
phase, we start from a simple cubic supercell containing 256 atoms with periodic boundary
conditions, initially arranged in a fcc lattice. We use the output configuration of each run as
a starting system for the next run. For the liquid phase, we start from a completely melted
configuration at very high temperature to avoid the superheated state in the simulation of
isobaric heating. The reference temperatures for the solid and liquid phases are chosen to be
close to the thermodynamic melting temperature, so that the accumulated errors in the Gibbs
free energy are eliminated.

We obtain the melting point at a given pressure by finding the equal Gibbs free energies of
the solid and liquid phases, and extend molecular-dynamics simulations to the pressure regime
3–4 Mbar to determine the melting curve. Considering a wide range of temperature and
pressure, we obtain the isothermal equations of state for various temperatures and construct
the Hugoniot equation of state which satisfies the Rankine–Hugoniot relation. The solid
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Hugoniot curve is obtained for pressures up to 4.0 Mbar, while for the liquid phase the pressure
is increased to 5.5 Mbar. Thus, we determine the pressure region where the Hugoniot melting
occurs, by comparing the melting curve with the Hugoniot equation of state for each phase.

3. Results and discussion

First we examine the static structure factorS(q) of liquid Cu, which is generated at 1500 K
through molecular-dynamics simulations. We find that the EAM potential well reproduces
the peak structure ofS(q) [18], as shown in figure 1. Then, we perform the thermodynamic
integrations to obtain the Gibbs free energies for a wide range of temperature and pressure.
In this case, the reference temperatures for the solid and liquid phases at zero pressure are set
to beT0 = 1200 and 1500 K, respectively. The Gibbs free energy of solid Cu at 1200 K is
calculated to be−4.02 eV/atom, as compared to the measured value of−4.06 eV/atom [19],
whereas for the liquid phase the Gibbs free energy is−4.28 eV/atom at 1500 K. By finding the
equal Gibbs free energies of the solid and liquid phases, we estimate the melting temperature
(Tm) to be 1246 K, similar to the previous EAM results of 1340 and 1171 K [8, 20]. Our
calculated melting temperature is lower by about 110 K than the experimentally measured
value of 1357 K [19], indicating that the calculational accuracy forTm is comparable to that
for Al [2, 14]. The results for the zero-pressure thermodynamic quantities at the melting
point are listed and compared with other calculations and experiments in table 1. The volume
change during the melting transition is estimated to be 0.81 Å3/atom, while the measured

Figure 1. The calculated static structure factorS(q)
(solid curve) of liquid Cu at 1500 K is compared with
experimental data (circles) from reference [18].

Figure 2. The calculated entropies (solid curves) for the
solid and liquid phases of Cu, Pd and Pt are compared
with experimental data (crosses) from reference [19].
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Table 1. The zero-pressure melting properties of Cu, Pd and Pt are compared with experiments.
HereTm, 1Sm, 1Vm andL denote the melting point, entropy change, volume change and latent
heat atTm.

Tm 1Vm 1Sm L dPm/dTm
(K) (Å3/atom) (kB ) (eV/atom) (kbar K−1)

Cu Experiment 1358a 0.52b 1.16a 0.14a 0.2381b

Other EAM 1340c, 1171d

Our EAM 1246 0.81 1.18 0.13 0.20

Pd Experiment 1828a 1.107a 0.17a

Other EAM 1390c, 1520e, 1828e

Our EAM 1635 0.76 1.08 0.15 0.20

Pt Experiment 2042a 0.60b 1.159a 0.23a 0.20b

Other EAM 1480c

Our EAM 1853 0.78 1.14 0.18 0.20

a Reference [19].
b Reference [21].
c Reference [8].
d Reference [20].
e Reference [27].

value is 0.52 Å3/atom [21]. The calculated entropies of the solid and liquid phases are found
to be in good agreement with experiments [19], as shown in figure 2, while in previous EAM
calculations they are slightly overestimated for Al [14]. From the change of entropy, the latent
heat of transformation is calculated to be about 0.13 eV/atom, very close to the measured value
of 0.14 eV/atom [19]. Using the melting properties near zero pressure, we estimate an initial
slope of the melting temperature with respect to pressure, i.e., dPm/dTm = 0.20 kbar K−1,

Figure 3. The melting curves (dashed curves) for Cu, Pd and Pt are shown. The thick solid
line segments represent the Hugoniot meltings for the solid and liquid phases, while experimental
data (reference [28]) for Pt are denoted by triangles. The small line segments through the solid
circles represent the slopes dPm/dTm determined from the Clausius–Clapeyron equation. The
arrow indicates the measured value (reference [22]) for Cu.
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which is obtained from the thermodynamic relation known as the Clausius–Clapeyron equation
(dPm/dTm = 1Sm/1Vm), close to the experimental value of 0.24 kbar K−1 [21].

To find the melting curve in the high-pressure region, we perform molecular-dynamics
simulations for eight different pressures between 0 and 2.5 Mbar. For each pressure, the
melting point is determined by the equal-free-energy condition. Combining this with the
calculational results for low pressures, below 0.06 Mbar, we obtain the melting curve which
is well represented by a parabolic fitting, as illustrated in figure 3. We find the pressure
variation of the melting temperature near zero pressure to be dPm/dTm = 0.20 kbar K−1,
in good agreement with the results obtained from both the Clausius–Clapeyron equation and
experiments [21]. To obtain the shock Hugoniot of Cu, we first calculate the isotherms for
several selected pressures up to 3 Mbar. To determine the melting pressures on the shock
Hugoniot, we combine the melting curve and the Hugoniot equations of state for the solid
and liquid phases. We find that the Hugoniot melting begins at about 1.9 Mbar and ends
at 2.25 Mbar, as shown in figure 3, consistent with the experimentally measured value of
2.3 Mbar [22]. During the Hugoniot process, the calculated atomic densities are found to be
larger by about 3% than the measured values [23–25], as shown in figure 4(a). The calculated
Hugoniot temperature determined from the Rankine–Hugoniot relation rises as high as 3200 K
at 1.5 Mbar, while experimentally it was suggested to be about 3000 K, on the basis of the
Mie–Grüneisen equation of state [26]. The shock-wave velocity shows a linear relationship
with the mass velocity, which was also observed in shock-wave experiments [23]; however, its
slope is slightly larger than the measured value because of the overestimation of the densities
(see figure 4(b)).

Next we investigate the melting properties of Pd, which is heavier by about 67% than Cu.

Figure 4. (a) The calculated Hugoniot equations of state for Cu, Pd and Pt are compared with
the results from shock experiments. (b) The shock-wave velocities are plotted as a function of
mass velocity for Pd and Pt, while the results for Cu are given in the inset. Solid and dashed lines
represent the calculational results for the solid and liquid phases, respectively. Experimental data
are represented by circles (reference [25]), triangles (reference [23]), solid boxes (reference [24])
and empty boxes (reference [30]).
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The reference temperatures (T0) for the solid and liquid phases at zero pressure are chosen to
be 1000 and 2500 K, respectively. The Gibbs free energy of solid Pd at 1000 K is calculated to
be−4.33 eV/atom, in good agreement with the measured value of−4.37 eV/atom [19], while
for the liquid phase the Gibbs free energy is found to be−5.74 eV/atom atT0 = 2500 K. The
melting temperature at zero pressure is estimated to be 1635 K, which is higher than that for Cu.
This calculated value forTm is underestimated by about 190 K compared with the measured
value of 1828 K [19], while in other EAM calculations lower melting temperatures of 1390
and 1520 K were obtained [8,27]. In table 1, various thermodynamic quantities at the melting
point are summarized. During the melting transition, the volume of the liquid phase is found
to be expanded by 0.76 Å3/atom. The temperature variations of the entropy for both the solid
and the liquid phases are shown in figure 2, and the latent heat of transformation estimated
from the change of entropy is about 0.15 eV/atom, in good agreement with the experimental
value of 0.14 eV/atom [19]. From the Clausius–Clapeyron equation, we estimate the initial
slope of the melting temperature with respect to pressure to be dPm/dTm = 0.20 kbar K−1,
similar to the result for Cu.

The melting temperatures for 11 different pressures up to 2.5 Mbar are plotted in figure 3.
From the melting curve, the initial pressure variation of the melting temperature is found to be
dPm/dTm = 0.23 kbar K−1, and this value is close to the result estimated from the Clausius–
Clapeyron equation at zero pressure. We find the Hugoniot melting to begin at about 2.25 Mbar
and to end at 2.65 Mbar. The calculated atomic densities during the shock compression are
found to be in good agreement with experiments [25], as shown in figure 4(a). From the
Rankine–Hugoniot relation, the Hugoniot temperature is increased up to 4600 K at 2.0 Mbar.
We find a linear relationship between the shock and mass velocities in the Hugoniot process,
as shown in figure 4(b), and the results are in good agreement with experiments.

For Pt, we choose the reference temperatures for the solid and liquid phases to be
T0 = 1000 and 2500 K, respectively. The Gibbs free energy of solid Pt at zero pressure
is calculated to be−6.34 eV/atom at 1000 K, consistent with the measured value of−6.35
eV/atom [19]. For the liquid phase, the Gibbs free energy is found to be−7.79 eV/atom at
T0 = 2500 K. The melting temperature at zero pressure is calculated to be 1853 K, and this
value is lower by about 190 K than the experimental value of 2042 K [19]. The calculated
volume change during the solid–liquid melting transition is 0.78 Å3/atom (see table 1), while
the measured value is 0.60 Å3/atom [21]. For both the solid and liquid phases, the calculated
entropies are in good agreement with experiments [19], as shown in figure 2. Near zero
pressure, we find a latent heat of about 0.18 eV/atom and the slope of the melting temperature
with respect to pressure to be dPm/dTm = 0.20 kbar K−1, while the corresponding measured
values are 0.23 eV/atom and 0.20 kbar K−1, respectively [19,21].

To determine the melting curve, we perform molecular-dynamics simulations for pressures
up to 4 Mbar. The pressure variation of the melting temperature near zero pressure is found to be
dPm/dTm = 0.20 kbar K−1, consistent with the results from the Clausius–Clapeyron equation
and experiments [21]. Our calculated melting curve is compared with recent experimental
results in figure 3, which were obtained using a laser-heated diamond cell up to 0.7 Mbar [28].
We find that the measured variation of the melting point with increasing pressure is slower than
that indicated by our calculations, i.e., giving a larger value of dPm/dTm = 0.37 kbar K−1.
At this point, it is not clear what causes the discrepancy between the calculated and measured
melting curves. Here we point out that the melting curve is sensitive to the statistical analysis
of the melting data; for example, three independent static measurements for Al were shown to
give different melting slopes [29]. To obtain the Hugoniot equation of state, we generate the
isotherms for pressures up to 5.5 Mbar. From the melting curve and the two sets of Hugoniot
data for the solid and liquid phases, the pressure region of the shock melting is found to lie
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between 3.5 and 4.1 Mbar, as shown in figure 3. We find the temperature of liquid Pt to be
as high as 16 800 K at 5.5 Mbar. In the Hugoniot process, the relation between the shock-
compressed atomic density and pressure as well as the shock–mass-velocity relation are in
good agreement with experimental data [25,30], as illustrated in figure 4.

We find that the EAM potentials used here generally underestimate the melting temp-
eratures of fcc transition metals such as Cu, Pd and Pt by 100–200 K at normal pressure,
compared with experimental data. A similar underestimation of the melting point was also
found for Al [14]. The initial slopes of the melting temperatures with respect to pressure,
which are obtained from the melting properties near zero pressure, are found to be consistent
with those directly calculated from the melting curves, confirming the self-consistency of our
calculations. These slopes are also in good agreement with the measured values, except for Pt,
where the melting data from laser-heated cell experiments up to 0.7 Mbar show a larger slope
for dPm/dTm. However, for both the solid and liquid phases of Pt, our calculational results
for the Hugoniot equations of state and the relation between the shock and mass velocities are
in good agreement with experiments. To resolve the discrepancy between the calculated and
measured values for dPm/dTm for Pt, further experimental studies are needed. On the basis
of our results, we note that the pressure region where the Hugoniot melting occurs generally
increases with increasing ionic mass, as shown in figure 5. Thus, our calculations demonstrate
that although the parameters in the EAM potential are determined to generate the ground-state
properties at normal pressure, the EAM potential describes the dynamic properties of the fcc
transition metals considered here reasonably well.

Figure 5. The pressure region where the Hugoniot melting
occurs is plotted as a function of ionic mass. The results for Al
are from reference [14].

Finally, we discuss the accuracy of the EAM potential in molecular-dynamics simulations
at very high temperatures. For liquid Cu, Pd and Pt, we find good agreements between the
calculated and measured structure factors, indicating that the liquid phase is well generated
by molecular-dynamics simulations. Among the transition metals considered here, Pd has
the highest density of states at the Fermi level because of the filled d shell. In this case, the
electronic contribution to the Gibbs free energy at very high temperature, where electrons are
excited above the Fermi level, may not be negligible. Since this contribution may decrease the
melting temperature, it is desirable to perform first-principles molecular-dynamics simulations,
if possible.
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4. Summary

In summary, we have calculated the melting curves up to 3–4 Mbar for Cu, Pd and Pt through
molecular-dynamics simulations based on the embedded-atom method. The melting properties
near zero pressure are in good agreement with both previous theoretical calculations and
experiments. However, we find a discrepancy between the calculated melting curve and that
obtained from melting data up to 0.7 Mbar for Pt; further studies are required to resolve such a
discrepancy. We find the solid and liquid Hugoniots to be in good agreement with experimental
shock data. On the basis of the results for the melting curves and the Hugoniot equations of
state, we have determined the melting region where the Hugoniot melting occurs.
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